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Abstract. In this paper we introduce the cone bounded linear mapping

and show that the cone norm is continuous. Among other things, we prove

the open mapping theorem and the closed graph theorem in TVS-cone

normed spaces. We also show that under some restrictions on the cone,

two TVS-cone norms are equivalent if and only if they induce equivalent

topologies. In the sequel, the notion of algebraic cone metric is introduced

and it is shown that every algebraic cone metric space has a topology and

the Banach fixed point theorem for contraction mappings on algebraic

cone metric spaces is proved.
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1. Introduction

Ordered normed spaces and cones have applications in applied mathematics

and optimization theory [6]. Replacing the real numbers, as the codomain of

metrics, by ordered Banach spaces we obtain a generalization of metric spaces.

Such generalized spaces called cone metric spaces, were introduced by Rzepecki
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[12]. In that paper, the author introduced not only a generalized metric but also

a generalized norm. Several authors attempt to adjust the theory of cone met-

ric to ordinary metric space, by proving the most important standard results on

fixed point theory and functional analysis, such as fixed point theorem for con-

traction mappings. Recently, Erdal Karapinar [9] studied fixed point theorems

in cone Banach spaces, and Abdeljawad et al. [14] studied some properties of

cone Banach spaces. In [13], Sonmez and Cakalli studied the main properties

of cone normed spaces and proved some results in cone normed spaces and

complete cone normed spaces. In this paper, we also try to prove some results

on these spaces.

Let E be a topological vector space (TVS, for short) with its zero vector θ.

A nonempty subset P of E is called a convex cone if P + P ⊆ E and λP ⊆ P

for all λ ≥ 0. A convex cone P is said to be pointed if P ∩ (−P ) = {θ}. For

a given convex cone P in E, a partial ordering � on E with respect to P is

defined by x � y if and only if y − x ∈ P . We shall write x ≺ y if x � y

and x 6= y, while x ≪ y will stand for y − x ∈ intP , where intP denotes the

topological interior of P .

In the following, unless otherwise specified, we always suppose that E is a

locally convex Hausdorff TVS with its zero vector θ, P a proper closed and

convex pointed cone in E with intP 6= ∅, e ∈ intP and � the partial ordering

with respect to P .

Recently Wie-Shih Du [15] introduced the notion of TVS-cone metric space and

replaced the set of ordered Banach space by locally convex Hausdorff TVS. Now

we first recall the concept of topological vector valued cone metric space.

Definition 1.1. Let X be a nonempty set and d : X ×X → E be a mapping

that satisfies:

(CM1) For all x, y ∈ X, d(x, y) � θ and d(x, y) = θ if and only if x = y,

(CM2) d(x, y) = d(y, x) for all x, y ∈ X,

(CM3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a topological vector space valued cone metric (TVS cone metric,

for short) on X and (X, d) is said to be a topological vector space valued cone

metric space.

Let (X, d) be a TVS-cone metric space, x ∈ X and {xn} a sequence in X.

Then

(1) {xn} is said to be convergent to x if for every c ≫ θ there exists a pos-

itive integer N such that for all n > N , d(xn, x) ≪ c. We denote this by

limn→∞ xn = x;

(2) {xn} is said to be a TVS-cone Cauchy sequence if for every c ≫ θ there
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exists a positive integer N such that for all m,n > N , d(xn, xm) ≪ c;

(3) (X, d) is called a complete TVS-cone metric space if every Cauchy sequence

is convergent.

Remark 1. Cone metric spaces in the Huang-Zhang sense [7] are included

in the above definition. Indeed, every Banach space is a locally convex Haus-

dorff topological vector space.

Let (X, d) be a TVS-cone metric space, c ∈ intP and x ∈ X. Define

B(x, c) := {y ∈ X : d(x, y) ≪ c}. It is well-known that the collection

τc = {U ⊆ X : ∀x ∈ U, ∃c ∈ intP,B(x, c) ⊆ U}
is a topology for X under which the above definitions of convergent and Cauchy

sequences and it is called TVS-cone metric topology.

The nonlinear scalarization function ξe : E → R is defined as follows:

ξe(y) = inf{r ∈ R : y ∈ re− P}
for all y ∈ E.

Lemma 1.2. [5] Let r ∈ R and y ∈ E, then

(i) ξe(y) ≤ r ⇔ re− y ∈ P ;

(ii) ξe(y) < r ⇔ re− y ∈ intP ;

(iii) ξe(.) is positively homogeneous and continuous on E;

(iv) If y1 ∈ y2 + P , then ξe(y2) ≤ ξe(y1);

(v) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2).

In [2], authors proved that de = ξe ◦ d is a metric on X which induces the

same topology on X as the TVS-cone metric topology induced by d.

2. TVS-cone normed spaces

In this section we first recall the concept of topological vector space valued

cone normed space.

Definition 2.1. Let X be a vector space over F (R or C) and ‖.‖c : X → E

be a mapping that satisfies:

(CN1) ‖x‖c � θ for all x ∈ X and ‖x‖c = θ if and only if x = θX , where θX is

the zero vector in X,

(CN2) ‖αx‖c = |α|‖x‖c for all x ∈ X and α ∈ F ,

(CN3) ‖x+ y‖c � ‖x‖c + ‖y‖c.
Then ‖.‖c is called a cone norm on X and (X, ‖.‖c) is called a cone normed
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space.

It is clear that each cone normed space is a cone metric space. In fact, the cone

metric is given by d(x, y) = ‖x− y‖c.

The authors in [2] proved that ‖.‖ = ξe ◦ ‖.‖c is a real valued norm on X.

In fact, they proved that every TVS-cone normed space (X, ‖.‖c) is normable

in the usual sense, i.e. the topology induced by topological vector space valued

cone norm coincides with the topology induced by the norm obtained via a

nonlinear scalarization function.

Definition 2.2. Let X be a vector space, ‖.‖c1 : X → E and ‖.‖c2 : X → E

be two TVS-cone norms on X. ‖.‖c1 is said to be equivalent to ‖.‖c2 if there

exist α, β > 0 such that

α‖x‖c1 � ‖x‖c2 � β‖x‖c1 ,
for each x ∈ X.

Theorem 2.3. Let X be a vector space. If ‖.‖c1 and ‖.‖c2 are two equivalent

TVS-cone norms on X, then τc1 = τc2 . Moreover, the converse is valid if all

elements of P are comparable. (i.e for all c1, c2 ∈ P , c1 � c2 or c2 � c1 ).

Proof. Fix e ∈ intP and suppose that ‖.‖i = ξe(‖.‖ci), i = 1, 2. We know there

exist α, β > 0 such that α‖x‖c1 � ‖x‖c2 � β‖x‖c1 , for each x ∈ X, also by

Lemma 1.2(iv), ξe is an increasing function on E, thus

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1
for each x ∈ X. Hence, ‖.‖1 and ‖.‖2 are equivalent norms on X, so they induce

same topology on X. On the other hand, ‖.‖i induces τci , i = 1, 2. Therefore,

τc1 = τc2 .

Conversely, let τc1 = τc2 , then ‖.‖1 and ‖.‖2 are equivalent norms on X. There-

fore, there exist scalers α, β > 0 such that α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1, for each

x ∈ X. So we have

αξe(‖x‖c1) ≤ ξe(‖x‖c2) ≤ βξe(‖x‖c1)
for each x ∈ X. On the other hand, the elements of P are comparable with

each other and ξe is increasing on E, hence

α‖x‖c1 � ‖x‖c2 � β‖x‖c1
for each x ∈ X. �

Definition 2.4. Let (X, ‖.‖c) and (Y, ‖.‖c) be two TVS-cone normed spaces

and T be a linear map from X into Y . T is called a cone bounded linear map

if there exists M > 0 such that ‖Tx‖c � M‖x‖c for all x ∈ X. We denote by
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|||T ||| the infimum of such M , i.e. |||T ||| = inf{M > 0 : ‖Tx‖c � M‖x‖c}.

Example 2.5. Let E = ℓ1 and P = {{xn} ∈ ℓ1 : xn ≥ 0, ∀n}. Then P is a

cone in E. Put X = C1[0, 1] and Y = C[0, 1]. Moreover, define ‖.‖c1 : X → E

and ‖.‖c2 : Y → E as follows:

‖f‖c1 = {‖f‖1
2n

}∞n=1, ‖g‖c2 = {‖g‖2
2n

}∞n=1

where ‖f‖1 = ‖f‖∞ + ‖f ′‖∞ and ‖g‖2 = ‖g‖∞ for f ∈ X = C1([0, 1]) and

g ∈ Y = C([0, 1]). Obviously, ‖.‖c1 and ‖.‖c2 are two cone norms on X and

Y respectively. Now define T : (X, ‖.‖c1) → (Y, ‖.‖c2) by Tf = f ′. Therefore,

‖Tf‖c2 � ‖f‖c1 implies that T is a cone bounded linear map.

Note that every cone bounded linear map T : X → Y is continuous, since

any TVS-cone normed space is a normable space with respect to ‖.‖ = ξe ◦‖.‖c,
so by lemma 1.2(iv), ‖Tx‖c � M‖x‖c implies that ‖Tx‖ ≤ M‖x‖. Hence, T is

a bounded linear map. Therefore it is continuous and so we have the following

cone normed version of open mapping theorem.

Theorem 2.6.(Open mapping theorem). Let (X, ‖.‖c), (Y, ‖.‖c) be two com-

plete TVS-cone normed spaces and T : X → Y be a surjective cone-bounded

linear map, then T is an open mapping (i.e T (G) is an open set in (Y, τc)

whenever G is an open set in (X, τc) ).

Theorem 2.7. (The inverse mapping theorem). If X and Y are two cone

Banach spaces and T : X → Y is a bijective cone-bounded linear map, then

T−1 : Y → X is continuous.

Remark 2. Let (X, ‖.‖c1) and (Y, ‖.‖c2) be two complete TVS-cone normed

spaces, then the vector space X × Y is a TVS-cone normed space by the fol-

lowing cone norm:

‖(x, y)‖c = ‖x‖c1 + ‖y‖c2
it is easy to check that the TVS-cone normed space (X × Y, ‖.‖c) is complete.

Theorem 2.8. (The closed graph theorem). If X and Y are two complete

TVS-cone normed spaces and T : X → Y is a linear map such that the graph

of T

Gr(T ) = {(x, Tx) ∈ X × Y : x ∈ X}
is closed, then T is continuous.

Let E be a Banach space and P be a cone in E. The cone P is called normal

if there exists a constant K > 0 such that for all a, b ∈ P , a � b implies that



76 A. Niknam, S. Shamsi Gamchi and M. Janfada

‖a‖ ≤ K‖b‖. The least positive number satisfying the above inequality is called

the normal constant of P .

In the sequel of this section we suppose that P is a normal cone in a Banach

space E.

Let {an}, {bn} be arbitrary sequences in E such that θ � an � bn, for each

n ∈ N and limn→∞ bn = θ, then by normality of P we have limn→∞ an = θ.

Consequently, sandwich theorem holds in ordered Banach space E when P is a

normal cone. The following example shows that in general sandwich theorem

does not hold.

Let E = ℓ2(R) and P = {x ∈ ℓ2(R) :
∑n

k=1 xk ≥ 0, ∀n}. Then P is a cone

in E (see [8]). Put

un =
1√
2n

(1,−1, 1,−1, ..., 1,−1
︸ ︷︷ ︸

2n terms

, 0, 0, ...)

and

vn =
1√
2n

(0, 1,−1, 1,−1, ..., 1,−1
︸ ︷︷ ︸

2n terms

, 0, 0, ...).

Clearly {un} and {vn} are two sequences in P . Then 0 � un � un + vn,

‖un‖2 = 1 and ‖un + vn‖2 = 1√
n
→ o as n → ∞.

Theorem 2.9. Suppose that (X, ‖.‖c) is a cone normed space and τc is

the cone topology on X. Define f : X → E by f(x) = ‖x‖c, then f is

(τc, ‖.‖)−continuous.

Proof. Let {xn} ⊆ X, x ∈ X and ‖xn − x‖c → θ as n → ∞ . Then, by (CN3),

we have

−‖xn − x‖c � ‖xn‖c − ‖x‖c � ‖xn − xn‖c.
It follows from the sandwich theorem that limn→∞ ‖xn‖c = ‖x‖c in E. �

3. Algebraic cone metric spaces

In this section we introduce the concept of algebraic cone metric space and

some of its elementary properties is studied and also a fixed point theorem in

this space is proved.

Let E be a real vector space and L ⊆ E be a subspace of E. The translation

A = u+L where u ∈ E is called an affine subspace of E. The dimension of A is

defined as the dimension of L. If dimA = 1, then the set A is called a straight

line. A straight line can be written in the parametric form A = {u+rv : r ∈ R},
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where u, v ∈ E and v 6= θ.

Definition 3.1. [11] Let E be a real vector space and P be a convex subset

of E. A point x ∈ P is said to be an algebraic interior point of P if for each

v ∈ E there exists ǫ > 0 such that x+ tv ∈ P , for all t ∈ [0, ǫ].

Note that the above definition is equivalent to the following statement:

A point x is an algebraic interior point of the convex set P ⊆ E if x ∈ P

and for each v ∈ E there exists ǫ > 0 such that [x, x + ǫv] ⊆ P , where

[x, x+ ǫv] = {λx+ (1− λ)(x+ ǫv) : ∀λ ∈ [0, 1]}.
The set of all algebraic interior points of P is called its algebraic interior and

is denoted by aintP . Moreover, P is called algebraically open if P = aintP ,

equivalently, P is called algebraically open if its intersection with every straight

line in E is an open interval (possibly empty). For example every convex open

set in R
d is algebraically open.

Suppose that E is a real vector space and P ⊆ E is a convex non-empty set

such that P ∩ (−P ) = {θ}, λP ⊆ P (λ ≥ 0), P + P ⊆ P and P 6= {θ}. In this

case we will say that P is an algebraic cone in E and the partial ordering on

E with respect to P is denoted by �a. Moreover, we will write x ≪a y if and

only if y − x ∈ aintP and we say that P has the Archimedean property if for

each x, y ∈ P there exists n ∈ N such that x �a ny.

One can easily see that P = {(x1, x2, ..., xn) ∈ R
n : xi ≥ 0, i = 1, 2, ..., n)} is

an algebraic cone in R
n with the Archimedean property. Also {f ∈ CR[a, b] :

f(x) ≥ 0, ∀x ∈ [a, b]} is an algebraic cone with the Archimedean property

in the real vector space CR[a, b]. But there exists a real vector space with

an algebraic cone which does not have the Archimedean property. For ex-

ample, in the real vector space CR(0,∞) if we consider the algebraic cone

P = {f ∈ CR(0,∞) : f(x) ≥ 0, x ∈ (0,∞)} then it is easy to see that P does

not have the Archimedean property. Indeed, if f(x) = x2 and g(x) = 1
x
then

there is not any n ∈ N such that g(x) ≤ nf(x), for all x ∈ (0,∞).

Lemma 3.2. Let E be a real vector space and P be an algebraic cone in E

with non-empty algebraic interior. Then

(i) P + aintP ⊂ aintP ;

(ii) αaintP ⊂ aintP , for each scaler α > 0;

(iii) For any x, y, z ∈ X, x �a y any y ≪a z implies that x ≪a z.

Proof. (i). Let x ∈ aintP, y ∈ P and v be an arbitrary element in E. By

definition of algebraic point, there exists ǫ > 0 such that [x, x+ ǫv] ⊆ P , so for

each λ, 0 ≤ λ ≤ 1, λx+ (1 − λ)(x + ǫv) ∈ P . Thus we have λx+ (1 − λ)(x +
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ǫv) + y ∈ P , since P + P ⊂ P and y ∈ P . Hence for each λ ∈ [0, 1],

λ(x+ y) + (1− λ)((x+ y) + ǫv) = λx+ (1− λ)(x+ ǫv) + λy + (1− λ)y

= λx+ (1− λ)(x+ ǫv) + y ∈ P.

Therefore the proof of (i) is complete.

(ii). Let x ∈ aintP , α > 0 and v be an arbitrary element in E. By definition

of algebraic point, there exists ǫ > 0 such that x + t v
α

∈ P , for all t ∈ [0, ǫ],

hence αx+ tv ∈ P , for all t ∈ [0, ǫ].

(iii) is trivial by using (i). �

Definition 3.3. Let X be a nonempty set, P be an algebraic cone in E with

non-empty algebraic interior and da : X ×X → E be a vector-valued function

that satisfies:

(ACM1) For all x, y ∈ X, such that x 6= y, θ ≪a da(x, y) and da(x, y) = θ if

and only if x = y,

(ACM2) da(x, y) = da(y, x) for all x, y ∈ X,

(ACM3) da(x, y) �a da(x, z) + da(z, y) for all x, y, z ∈ X.

Then da is called an algebraic cone metric on X and (X, da) is said to be an

algebraic cone metric space.

Theorem 3.4. Let (X, da) be an algebraic cone metric space. Then the col-

lection {Ba(x, c) : c ∈ aintP, x ∈ X} forms a subbasis for a Hausdorff topology

on X, where Ba(x, c) := {y ∈ X : da(x, y) ≪a c}.

Proof. Trivially
⋃

x∈X,c∈aintP Ba(x, c) = X, so the collection {Ba(x, c) : c ∈
aintP, x ∈ X} forms a subbasis for a topology on X. Now we show that

this topology is Hausdorff. Let x, y ∈ X and x 6= y, take θ ≪a c = da(x, y).

The facts that P ∩ (−P ) = {θ} and da has the property (ACM3) imply that

Ba(x,
c
3
)∩Ba(y,

c
3
) = ∅. Therefore the topology induced by the above collection

is Hausdorff. �

Let (X, da) be an algebraic cone metric space, x ∈ X and {xn} be a se-

quence in X. Then one can prove that if {xn} converges to x with respect to

the topology of X then for every θ ≪a c there exists a positive integer N such

that for all n > N , da(xn, x) ≪a c.

Definition 3.5. A sequence {xn} is called a Cauchy sequence if for ev-

ery θ ≪a c there exists a positive integer N such that for all m,n > N ,

da(xn, xm) ≪a c. Moreover, (X, da) is said to be a complete algebraic cone

metric space if every Cauchy sequence is convergent.
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In the sequel of this section we suppose that P has the Archimedean prop-

erty.

The Banach fixed point theorem is an important tool in the theory of metric

spaces, for more information one can see ([1], [3], [4],[10]). Now we prove the

Banach fixed point theorem in this framework.

Theorem 3.6. Let (X, da) be a complete algebraic cone metric space. Sup-

pose that a mapping T : X → X satisfies the contractive condition

da(Tx, Ty) �a λda(x, y),

for all x, y ∈ X, where λ ∈ (0, 1) is a constant. Then T has a unique fixed

point in X. Moreover, for each x ∈ X, the iterative sequence Tnx converges to

the fixed point.

Proof. Choose x0 ∈ X. Set x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 = Txn =

Tn+1x0. We have:

da(xn+1, xn) = da(Txn, Txn−1) �a λda(xn, xn−1)

�a λ2da(xn−1, xn− 2) �a ... �a da(x1, x0).

So for n > m,

da(xn, xm) �a da(xn, xn−1) + da(xn−1, xn−2) + ...+ da(xm+1, xm)

�a (λn−1 + λn−2 + ...+ λm)da(x1, x0) �a

λm

1− λ
da(x1, x0).

But P has the Archimedean property, so for each θ ≪a c there exists ǫ > 0 such

that ǫda(x1, x0) ≪a c. Hence, there exists N ∈ N such that for each m > N ,

we have
λm

1− λ
da(x1, x0) ≪a c.

Therefore, Lemma 3.2(iii) and da(xn, xm) �a
λm

1−λ
da(x1, x0), for n > m, imply

that {xn} is a Cauchy sequence. By the completeness of X, there exists x∗ ∈ X

such that xn → x∗ (n → ∞). We know

da(Tx
∗, x∗) �a da(Txn, Tx

∗) + da(Txn, x
∗) �a λda(xn, x

∗) + da(xn+1, x
∗),

so convergence of {xn} to x∗ and the fact that the topology of X is Hausdorff

imply that Tx∗ = x∗. The uniqueness of fixed point of T is clearly obtained

by the facts P ∩ (−P ) = {θ} and λ ∈ (0, 1). �

Corollary 3.7. Let α ∈ R with α > 1 and let (X, da) be a complete algebraic

cone metric space, T : X → X be an onto mapping which satisfies the condition

αda(x, y) �a da(Tx, Ty).
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Then T has a unique fixed point.

Proof. Let x 6= y and Tx = Ty, then by assumption, one can observe αda(x, y) �a

θ which is a contradiction, since P ∩ (−P ) = {θ}. Thus, T is one-to-one and it

has an inverse, say S. Hence,

αda(x, y) �a da(Tx, Ty) ⇔ da(Sx, Sy) �a

1

α
da(x, y).

Therefore, by the above theorem, S has a unique fixed point and so T has a

unique fixed point. �

The above corollary has been already proved in the case that X is a cone

metric space and P is a normal cone (see [9]).
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